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ABSTRACT

Let A be the mesh in the plane obtained from a uniform square mesh by

drawing in the north-east diagonal in each square. Let wP be the space of
k ,A

pbivariate piecewise polynomial functions in C , of total degree 4 k, on the

mesh A. It is demonstrated that the controlled approximation order from the

linear span of all the box splines in wp is

; (1) 2k-2p if 2k-3p = 2

(2) 2k-2p-1 if 2k-3p = 3 or 4

(3) k + I if p = 0

(4) min{2k-2p-2,k} if 2k-3p > 5 and p > 1

Thus the controlled approximation order problem is solved completely.

AMS (MOS) Subject Classifications: 41A15, 41A63, 41A25
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SIGNIFICANCE AND EXPLANATION

'I

This report continues the study of approximation by bivariate smooth

splines on a three-direction mesh. Initiated by de Boor, DeVore and H8llig,

box splines have proved useful in determining the approximation order from

certain spaces of bivariate splines. By using box splines, de Boor and H8llig

gave a sharp upper bound for the approximation order, and Jia got a sharp

* lower bound for it. But there is still a gap between these two bounds. While

determining the exact value of the approximation order is still a formidable

problem, Dahmen and Micchelli consider the so-called controlled approximation

order from certain spaces of bivariate splines. In their study, Dahmen and

Micchelli use a characterization result of Strang and Fix concerning

controlled approximation. However, the result of Strang and Fix has been

shown to be not true in their original sense. After adjusting the definition

of controlled approximation order suitably, in another report, we obtain-,the

desired characterization property for controlled approximation by box splines.

Hereafter-we shall refer to controlled approximation in the latter sense.

In this report, we determine+,completely the controlled approximation

order from the span of all box splines of any given order and smoothness.

I

-.

The responsibility for the wording and views expressed in this doscriptive

summary lies with MRC, and not with the author of this report.

VA % ~ % ..4-.~.

1 . I £% .+ 1 .. .-% 1 . .% -... .. "- -- - '- -- ." - -- * - -. . .' • " ---" ' ' " '" '- .- - - -. .-• -.- -. .



ON THE CONTROLLED APPROXIMATION ORDER

FRCM CERTAIN SPACES OF SMOOTH BIVARIATE SPLINES

Rong-Qing Jia

In this paper we study the controlled approximation order from certain

1% spaces of smooth bivariate splines on a three-direction mesh. The work in

* this respect was initiated by [BDI and [BH.. 3], followed by [DM 1-2] and

(JI21 •

Following (BH3] we first introduce some notations. Let

A : U x 2 ; x(l) - n, x(2) - n, or x(2) - x(l) - n)
ne6

In other words, the mesh A is obtained from a uniform square mesh by drawing

in the north-east diagonal in each square. Let
P

Sti :- W P 7 AC
k,fA k,ft

be the space of bivariate pp (piecewise polynomial) functions in Co, of

total degree ( k, on the mesh A. Also, we denote by wk the space of

polynomials of total degree 4 k, and by w the space of all polynomials.

We are interested in the approximation order m of S. In the case

p > (2k-2)/3, the approximation order is m - 0 (see [BD]). In the case

p < (2k-2)/3, it is known that

m(k)-2 C m m m(k)

where m(k) :- min{2(k-o), k+1} (see [BH3] and [J2]).

While determining the exact value of m is still a formidable problem,

(It2] discuss the so-called controlled approximation order. This concept has

been introduced by (S]. Here is the setup: Given a collection

- {1,...,N 1  of certain locally supported functions on Rn , we want to

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-8210950.
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Sn
find, for any f e C7(R ) and any h > 0, a nonnegative integer m and N

h n
multivariate sequences w :Z + R (i = 1,...,N) such that

N

(if- w.(j) $(- - J ( const hm if lmlI

j" ," and

(2) Ow h (*)1. 4 const.IfI. (i 1,..N

The largest value m with the above property is called the controlled

approximation order of t. A characterization result for controlled

approximation order has been stated by [FS]:

Theorem A. t , ,n Ihas controlled approximation order bigger

than m if and only if there exists a linear combination B of

N and their translates for which the map

T :p* ), p(J)B(--J)
.. j e a n

is degree-preserving on T

Rmark. A map T is said to be degree preserving on wi if for any3

p e i , Tp-p has degree less than deg p. Let Si be the shift operators on

m

Sip :- p(--e ) (i = 1,2)

If T commutes with Si(i - 1,2), then T is degree preserving on w if

and only if T is a bijective map from w to W i

Recently, however, [J3] produced a counterexample to Theorem A. This

suggests that we should adjust the definition of controlled approximation

suitably. We note that [M42] quote Theorem A in a different way. They

require that the coefficients of the approximation be boundable locally. It

turns out that if the requirement of (2) is replaced by

(2') There exists a positive constant R independent of h

-2-
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such that

dist(jh, supp f) > R implies that w h(J) =0 (i1

then Theorem A holds for any collection $? of box splines (see [j4]).

Hereafter, we shall refer to controlled approximation in the latter sense.

~1 We are interested in the case when f' consists of all the'box splines

p
belonging to w kA * We adapt the definition of box splines to suit our

3 ltr+s+t bdiscussion. For (r,s,t) e z, lt :( )b
+i

the sequence given by

r 1*e

r+1 r+s e2 (,)

and r+s+1 r+s+t e3 : 1I

Then the box spline M..: Mrfst is defined as the distribution given by the

rule-
r+s+t

Mr,s,t st I i) )d

(see BH 1]). let

kip 04r,a,t IMrls't ewkA
By m(k,p) we denote the controlled approximation order of 4' k * It is

known that

Ui) (see [DH1J) m(k,p) - 2k-2p if 2k-3p -2

(ii) (see [D21 ;(kip) - 2k-2p-1 if 2k-3p - 3 or 4

p heifwe denote bym(kip) the approximation order ofw
If by~ k,A' te

m(k,p) 4 m(k,p)

in the case 2k-3P - 2, (BH1J point out that

2k-2p - p+2 4 ;(kip) - (kip) p+2

Nevertheless, we must be careful in distinguishing the controlled approxi-I

mation order from the approximation order. Indeed, we shall see that

-* ~.* w ~* ~* ~%** -3-.



m(5,1) = 5 < m(5,I) = 6

We will discuss this matter in more detail later.

In this paper we determine m(k,P) completely. Our main result is tL..A

(iii) m(k,p) - k + 1 if p = 0

(iv) m(k,p) min{2k-2p-2,k} if 2k-3p ) 5 and p > 1 .

(Recall that m(k,p) = 0 if 2k-3p 4 1).

More generally, let f be a collection of bivariate box splines:

i - fm ; u e u)u

with

U c {(r,s,t) e Z3; r,s,t ) 0, min(r+s,s+t,t+rl > I)

Then

Mu e L for u e U

Whenever convenient, we refer to the three components of u e u as r,s,t,

respectively.

The following theorem gives a criterion for the controlled approximation

order of *.

Theorm 1. Let

: {(q,,q2 ) e 92 q, + q2 4 m+).

Then * = {M u u e U) has controlled approximation order > m if and only if

there exists a mapping b: K + R such that

(1°)m I bu - 0 for any q,s,t with (q,s+t) e
r oq

(20 )m ) b - 0 for any q,t,r with (q,t+r) e Q
s)pq

(30)m I b - 0 for any q,r,s with (q,r+s) e gm
t>q

(40) 1 b 0

ueu

-4-
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We notice that (I°)m , (
2 °)m and (30)m imply that

(S°m b u 0 for any u = (r,s,t) with r+s+t 4 m

Indeed, if u e U, then one of r, s and t is nonzero, say, r 1 1. Now

assume that r+s+t 4 m. Then r 4 m-, for otherwise s = t = 0, contra-

dicting that u e u. Thus (r,s+t) and (r+1,s+t) e Qm' hence (10 )m impliesIj
that

b =0 and . b = 0

,s t rr+l

"; Therefore

bu" ) - -o
))r ,fot ))r+l I Ast

Before proving Theorem 1, we need to introduce some notation. Recall

that

e- (1,0), e2 = (0,1), e3 , (1,1)

Let
V f :- f-f(.-ei)

ie

Di :- Dej

i.e., Di is the partial derivative with respect to the i-th component,

i - 1,2, and D3 = D1+D2. It follows from [BHI1] that, for any function

a: Z2  R, we have

D,( a(J)M(-J)) ) Via(J)M-\e (9-j) if e i e T

je2 je 2  i

2
We define, for any function f : R \A + R, and for x e R\Z,

jump1 f(x) :- lm [f(xE) - f(x,-c)]
€+0

JumP 2 f(x) : lim [f(ex) - f(-C,x)]
C+0

Jump3 f(x) := lim [f(x-c,x+E) - f(x+c,x-e)]

Thus, as a function from R to R, jump1 f represents the jump of f across

-5-
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the x -axis. For jumP2 f and jumP3 f, we have a similar interpretation.

With j - (Jl,J2) e z , one easily verifies the following formulae:

4.= MrlX-jI) if j2 = 0; r > 0, and s+t = 1

(3) jump (-)(x) = -r (X-J-) -)I = -1 r > 0, a = 0 and t = 1
.,,. -.. 31 jumpI  r,s,t( - (x

'rst= -M (x-j I) if j 2  -1; r > 0, s I and t 0

= 0 otherwise .

.4. Here M is the univariate B-spline of order r at a uniform mesh:r

Mr(x) := r[0,...,r] (e-x)
r - 1

For jump2  and jumP3, we have similar formulae.

..*.. The proof of Theorm 1.

If 0 = {M u u e u) has controlled approximation order > m, then by

*Theorem A, there exists B, a linear combination of Mu  and their

translates:

(4) B =a Ni , u (*-i)
ueo ie i

V (here I is a finite subset of 9) such that the mapping

T : p + p(J)B(.-j)

is degree-preserving on 
w . Set
m

(5) b := a a,iiei

We claim that b satisfies (10)m, (20 )m, 13°)m and (40). 7b this end we
.4,

shall prove

(1 0) m . b u 0 for any q1,s,t with s+t 4q2 and 1 4 ql m+1-s-t

m 2 r~q1

by induction on q2. Then 11°)m,m is just (10)m Notice that (1°m,0 holds

vacuously. Suppose that (IV)m,q2 is true (q2 
< m). We want to establish

(10)miq2+I. Consider

-6-
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' ql - q2
jumPlCD 11 D2 2 p(j)B(.-j))]

jez2

where (q1, 2 ) e z2 with q > 1 and q + q 4 m, and p e v • Since
1r2 + 11 2q +q2

) p(J)B(I-j) is a polynomial, we have
A? * 2

q -1 q
(6) jump1 (D D2 ( p(J)B(.-J))] - 0

j es* ..

On the other hand, (4) yields that

(7) jumPl[D-I D2  p(j)B(--j))]

'~ jez2

jup q0-1 q2

a {jump (D I ( P(J)M (s-i-J))])
ueu iei jeZ 2

We now evaluate

".-. q 1 -1 q 2
J - jumplI(D I  D2 (" p(J)M (*-i-J))]

If q, > r, then -

q1 -1-r q2
J - jump1 [D1  D2 ((VP)(J)M - 0

since, by (3), jump, M 0,s,,t, - 0, whatever 9', t' might be. If ql ( r,

then

q1 -1 q2  q2 q 1 -11 D2 (j P(j)M (-i-j))= D2 () (Vql p)(J)M1+ (-i-j))
1 2u2 1 r-q +1,s't

There are two subcases: q2 4 s and q2 > a. If q2 4 s, then
q' ql1 q2

JumP1( 1 V 2 p)(J)Mr 1,s~ q,t(.-i-j))1 r-q1+ 
.

By (3), J # 0 only if (a-q2 ,t) - (0,1) or (1,0). We have, for

(s-q2,t) - (0,1), that

-7-t -7-
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-, -~ q2

.,.,, j :ump ( : ( I  V 2 p)(j)M ( - - )
1 2 r-q1+1,0, 1,..e

ql-1 q 2 -

= 
ex ( V2 V3p)(j)Mr-q 1+1 ( .i-j)

by (3). Since p e V-v2v3p is a constant. Thus
qP e 1q2  a

1 -V 2 Vp for (st) = (q 2 1) and ql rj - V1  v2 v3P 2',

Similarly,

Sy J q I V q2 p for (s,t) -(q2+1,0) and ql r

Let us now consider the case q2 > s. In this case

q22s 1-1 -1-1(1 ( (V 1 q-p)(J)M +Dst'--) q D2-s(q (, 1 V;)(J)M (-ij)

r-q+1 2 1 q1+l,0,t

By the binomial theorem,

q2-q2 - s-n q 2 -s q 2-s 2 n n
D 2  - (D3-D 1) = (-1) n )D D3

Invoking (3) again, we see that

q 2-s-n  q -1I
jump s D((1 V (0(.-i-j)) Y 0

only when n - t-1 and q2-s-n < r-q1+1. Also, we have, for

n = t-i e [O,q 2-s] and q2-s-n < r-q1+1, that

q 2 -s-t+l q(2 -s q2
- s- t + 1 t-1

J jump1(-1) t-1 )D1 D (V* - j))
jeZ 

2

r-q1+1,0,t
(* i - j ) )]

(-) (2-s-t+l (q 2-s ql+q2
"s-t s t- (-1) "t-1 )9 V2 V3p "

-1

If we interpret C_) as 1, then the above results can be summarized as

-8-
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q-1 q

jumpl[D 1  D2
2 ( ) P(J)B(*-J)) ]

jez2

where (qlzq2) e 52 with q ; 1 and q + q2 m, and p e wi Since
whr q~2 + 1 I q +q2

q1 ~2
p(j)B(*-j) is a polynomial, we have

2

je2 q1- q2
(6) jump1 [D1  D 2  p(J)B(0-J))] 0

jez 2

On the other hand, (4) yields that

q1-1 q2

(7) jumpl[D1  D2
2 ( p(J)B(--J))]

jez2

- q 1 -1 q2 .

. iez aui{jump1(DI D2  e P(J)M(e-i-J))]}SueU iel jez 2

We now evaluate

ql-1 q2

J :- jump1 (DI  D2 ( P(J)Mrfs't (-i-j))]
J

If q > r, then

q1-1-r q 2
J - jump1 D1  D2 Q(Vp)(i)M (,-i-j))- 0

j O,s,t

since, by (3), Jump, M1 s,,t , - 0, whatever s', t' might be. If q r,

then

q -1 q 2  q q - j

DI  D2 (I p=j)Mu(--j)) D2 (. (V1  P)(J)Mr-q+t,s,t
jJ

There are two subcases: q2 4 s and q2 > s. If q2 4 s, then

q1l
- q2

JumP1 ( (V1  V2 P)(J)Mr-q+Is.q,t-i-J))

By (3), J 0 0 only if (s-q2,t) = (0,1) or (1,0). We have, for

(s-q2,t) - (0,1), that

-7-
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jez

(1 V 2 V3 p)(j)M 1-q+1 Gij

by (3). since p ew ,V 1 - q 2 pi ontn.Tu
11 2q 2I s a2o an.Tu

q1- q2
I1 V= 2V for (s,t) - (q 2 4'1) and qC r

Similarly,

j VI V 2 P for (s,t) (q 2+1'O) and q, 4 r

Let us now consider the case q2>s0 In this case

2 q1 (V 1 q (V1 l IV P

By the binomial theorem,

q28q 2-s q 2-9-n q2-s q 2-s-n n
D (D 3-D 1  (-1 n 93

Invoking (3) again, ye see that

JUMI DI D3 d(V 1I V8p) (J)M r-q+io0t (*-1i))00

only when n - t-1 and q2-s-n < r-ql+1. Also, we have, for

n - t-i e (O,q2-s] and q 2-s-n < r-ql+1, that

q ~ ~ ~ ~ ~ ~ ~ V 2 s-+ q28 (j)1t1

j UMP 1 U[-I) 2  (t_ )D 2D 3  2qV 1 -)1 J

r-q 1+1

-(-1) q s t1 -)Vq 2-t 8Vt
-11 23

If we interpret as 1, then the above results can be summarized as

-8 I%
*C *~..* . t%



2

jump l ED1  D2  Y P(J)M (.-i-j))]

(8) jez

q2"s-t+ q2-s q1+q2-s-t st
- (1)t- 2 for s+t 4 q2+1 and r+s+t > q1+q

and 0 otherwise. Now (7) becomes

ql " I q2

(9) jumpE[D 1  2

jes 2

q2+ 1"s't q 2-t Vql+q2--t-t
8-)i-1 1 V2vtp  ui

s+t(q +1 iei
2ie

r+s+t>qg+q 2

q 2 + 1 -- t, q2 -t _q I +q 2 "s-t--

b 2 2I )v~+2 V~) br,s,t(1 s. I 7273P

s+tq 2+1 r

*1. r+s+t>q +q 2

Comparing (9) with (6) gives

q2+1"8-t t q : +q2 " -st
(10) 2 (-1) )- 1 2u

S+t<q 2 +1 r>g 1+q 2- -t

If s+t < q2, then (10 )m,q2  gives

b 0
r>q I1+qi2-8-t u

Moreover, s+t q2 +1 implies that (-I) q s -t 1. Therefore, (10)

Moeoer s~t q2+ 8 -

becomes

(11) Vl IV t P
I vv 3 p( ) b) - 0

s+t-q2 +1 r)q u

For given (s0,t0 ) with s0+t0 = q2+1, there exists P e wq2+1 such that

-9-
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,1 % q

VV tP 1 for (s,t) = (s0,t 0 )

2300

=0 for s+t = q2+1 but (s,t) ' (s0 ,t0 )

t 8 p

0O /S t 1). ye can find
(e.g., choose P(xlx 2 ) : x (x2-x) 0 Then

q1-

p e 5q1+q2  so that V 1  p - P. Now (11) yields that

., q2  b 0
r~q1  rs 01t0

This proves (10)moq2+1. By induction, (10)m has been proved. The proof of

(20)m and (30)m is similar. As to (40), since T : p 4 + )2 p(j)B(.-j) is

degree-preserving on 
I we have

But B(* -j ) j 0

But 
e2

): B(--) ai M u (.-j)
jes2 ueu iei jez2

ueu ie i ueu
This proves (40

Conversely, suppose that (1°)m , (2°)m , (3°)m and (40) hold. We want to

construct a linear combination B of Mr,8st and their translates such that

T : p + ) p(J)B(e-j)
2isa

is a degree-preserving map on w M Note that after multiplying by an

appropriate constant, we may assume

)' bu-1
ueu

Recall from [J2] that there exist constants ad-1( - 0,(I ,...,d-2)

such that for any polynomial f of degree < d-1,

k-2

~f(i)M N f (i)() a 1d1M id(-+I))

-10-
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where M'i~ is the i-th B-spline of order d:
M x di..,~].d~

i,d +..

*(see [j 1 Lemma 11). We define B8 in terms of these a as

r-1 i-i s-1 J-i t-1 k-i r-i B-i t-1
B - : (x~)j[f a ~ ~ a .1 a x

i-o A oj=0 Vi =0 k-0 V =0 i-i i' i-i ' k I vko
Sj k

M~ (x1 + rix~+ ~ ,x 2 + U1 +

i-0 k-0 j-0 k-0

These 9B t have the following property:

Lama(f.[- Lemma 2]). For any bivariate polynomial p of deqree

< r+s+t, we have

Ci) DrD I p(i)( b b sBrs Ce-i)] 0, if ).br ~ 0

Ci) ~DE~ ~jC). b t A's') 0 r'd ru'u -0

jez 2  A

(iii) D1D3 [ p(j)( I b rAtB rAt(O-i))] Or0 if b -0

*~~~~ ~ 3 2Ar As~ ~~

Proof. Since b. 0, summation by parts gives

bra XsA r s - br sfA )(B r.,1 Br,s,t+i)

By I J2 1 Lemma 2] ,

DrB r'Ci)CE - B )oi]
1 2r'sel r ,s,1+i

frany poyoma p of degree < r+s+f. This proves (i). One proves (ii)

and (iii) in the same vay.

In the following construction we use only those Mu. for which

r+s+t > m. In other words, we may assume that u e u implies

r+s+t > m. Let

1%%
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B b bB
u uueu

We claim that

T p + ). p(J)B(.-j)

jez 
2

is a degree-preserving mapping on w . As we did in J2 ; Lemma 4],

we first prove that T carries 1. into Vi by showing that

(12) q q2DI D2 [ p(J)B(e-j)] e WJ0

for any (q1 q) e 2 with q1+q2  deg p 4 mfo ay(q~2) Z+

Let

RI (- u e u, r > ql and s > q2)

E2  e{uUi r 4 ql and s 4 q2 }

R 3  ( u e U; r 4 qI and s > q21

z4  {u e U; r > q and 9 4 q2

To prove (12), it suffices to show that
~qI q2

DD 2 [1pj b u U(s-ji] e6
- u6Ei uu

for each i - 1,2,3,4.

Case i - I. In this case, r > q, and s > q2 ; hence

q q qq 2  q1 q2
D1 D ) p(J)m u(s-)] - VI V2 P(J)Mr-qs-q (.-J) "V 1 V2 p ,

q2 q2since V1 V2 p{J) is independent of J. Moreover, Br,s,t is a linear

combination of Mr,ot and its translates, therefore

~q 1 q2 -
D D D A p(i) b B (.-J)] - const.

1 (r,s,t)e61

-12-
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Case i - 2. In this case, ql+q 2 4 m implies that r+s < m; hence

". t > 1. Thus b = 0 by (2)., and therefore by the Lemma we have" 
011

q -r q 2-r2
D1 D2  D) P(J) bi I(b-P(J)]

r~q1 2 1 tP Ir,s,t r

° j (r,s,t)eE2
D 1.i q~ q2 s r s }i() Br  (-j)) 0

".'' .= D1  D2  (D1D2  t~l brs,t r ,s,t ( =

"t. r q

Cae i - 3. In this case (see [J21),

(13) ql q 2  rt r s

I D2 1 DID Prt + DID2 Gr s

r t-1 q,-r- ,-r,, q1 +q2-r-1r 1  ( 1) 1 t D D

tI-q 1 2 -r-
" + 1

where l t  and Gr s  are polynomials in D1 and D2 . Furthermore,

' Ht 0 for r+t > qI

Gr. - 0 for r+s > qI+q2

Denote by %u the third term on the right-hand side of (13). Since

• +q 2-r-s+l C A t-1 implies that t > I and a > ql+q 2-r-1, we have

A Aut[ P(J)su(''J)] e To

Thus, by the lea, the hypotheses (10 )mI (2o)m and (30)m of Theorem 1

- yield

- - -'ql q2

1 D 2 [*

Dr t rD2 + A)[ p B-J]

- bu(D1O3Hr + D1D 2 Gresu
u 3 U

uSE3

-H DrD[ ). b ~B (--J)l
t+r'q1  r t  3  >q u u

+ G rD 12b ) B(.-J) + const e,0
r+s:q 1+q2  t>ql+q 2 -r-s

>q1
2

-13-
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.1,. Case i = 4. The argument is similar to that in the case i = 3.

We have proved (12), and therefore conclude that T carries wr intom

iv To finish the proof, we observe that for any p e w Vq, v1  2 p  is a
m q +p isa

constant, therefore

ql q2  q1 q2
' 1 1V2 - Tp = p(j)(V 1 V2 B(O-j))

~j

=- V ql q2  ql q2
(V I 2 p)(j)B(.-j) = V I V2 p

j

This shows that p and Tp have the same leading coefficients, hence p - Tp

is a polynomial of degree < deg p. This completes the proof of Theorem 1.

Now we are in a position to prove our main result.

Theorem 2 The controlled approximation order m(k,p) of b is
.. kp L

() 2k - 2p if 2k-3p = 2

(ii) 2k-2p-1 if 2k-3p - 3 or 4 v

(iii) k+1 if p 0

(iv) min{2k-2p-2,k} if 2k-3p > 5 and p 1.

Proof. Although (i) has already been proved by [BH 11, and (ii) has

already been proved by (DM2 ], we still give a proof for them to illustrate our

method.

If 2k-3p - 2, then p - 2U-2 for some integer U and k = 3U-2. Thus

. e w P is equivalent to u - (ia,p,). For m - 2p-1, we choose
u k'fi

b = 1. This b certainly satisfies all the hypotheses of Theorem 1.

A But, for m - 2p, (1 ) implies b - 0. Hence = (HpP I has

controlled approximation order 2V - 2k-2p.

If 2k-3p 3, then p n 2V-1 for some integer k and k 3U. Thus
" {Mtj+I '  MI M,+,111

k,p d+ll , +

For m " 2p, we choose

-14-
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= 1 and b b 0

e., Then b satisfies (1°)M , (20)m, (3°)m and (40) in Theorem 1. But, for

m 2+l, (1 )m implies that b ;+,1+1,11 Og similarly, b

b 0 0. Therefore t has controlled approximation order 2p+1":'. bp~l P, J +1k ,1

2k-2p-1.

If 2k-3p = 4, then p - 2u-2 for some integer p and k 3p-1-. Then
Ok,p (M P+I'P, Mt M ,'jP+'MPOU

For m - 2P, we choose
~1

b -b b 1 b' , b+I,, P,U+I, = bi+1,i 2' bi,, "2"
'This b satisfies (°)m , (20., (3°) and (4°). But, for m = 2U+1, (10 )m

m m

implies b , 0; similarly, b + b+ 1  0 . Then invoking11,11,1+1 011 ,~*

)magain, we have b + b - 01 hence b 0. This shows

that I k, has controlled approximation order 2U+1 - 2k-2p-1.

In case (iii), P - 0. If we had talked about the approximation order,

the result would be trivial. However, for controlled approximation order,

this result is not trivial: We must exhibit a map b : K + R such that

(10 )k' (20 )k' (3° )k  and (40) hold. Lat

fI if r+s+t - k+2 and min{rs,t) )-1

b :- -1 if r+s t - k+1 and min~r,s,t} )o I

0 otherwise

* Then, for fixed r, s with r+s k, we have

I 1 if X - k+2 - (r+s)

br'X -1 if A - k+1 - (r+s)

0 otherwise

Hence

This proves (3°)k. Also, one proves (1°)k and (20 )k in the ame

l-15-
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fashion. As to (40), we observe that

b - b + b
U r+s-k+ u r+ uk

*. The second sum on the right is 0, while r+s = k+1 and minfr,s,t} > 1

implies that t - I. But br,s,t = I for r+s = k+1 and t = 1. Hence

b = k, which verifies (40). Thus m(k,P) = k+1 fo" p 0.

Now we turn to the new result (iv). If k 4 2p+2, then it is shown in

,J21 that
*1 •*

-(k,P) > 2k-2p-2-I.

If k > 2p+2, it is also proved there that

m(k,p) > k

Thus we always have

m(k,p) > min{2k-2p-2,k)

It remains to prove

m(k,p) -C min(2k-2p-2,k)

First, we prove m(k,p) 4 k. Suppose to the contrary that m(k,p) > k.

Let

.. U :- (u; r+s+t - k+1 or k+2, and min(r+s,s+t,t+r} ) p+21

Then, by Theorem 1, k,p has the same controlled approximation order as

fu :-{m u; u e u)

has. By Theorem 1, there exists a function b : U + R such that (10 )k, (20 )k

and (3°)k and (40) hold; i.e.,

) b - 0 for any s,t with s+t • k ,

Sb = 0 for any r,t with r+t 4 k,
u

% t
'Iu U

b u b 0

ueuu

-16-
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We claim that (10 )k' (2)k and (3°)k imply that all br,s,t  0.

Since P ) 1, we have 2k ) 30+5 ) 81 hence k ) 4. Thus

minfr+s,s+t,t+r) 4 2(r+s+t)/3 4 (2k+4)/3 C k .

Suppose bu 1 0 for some u. Without loss of any generality, we may assume

a+t 4 k. Then there exist s0  and t o such that br0 0  0,

but bu  0 for all (st) with s+t < s 0,t 0 . Note that soto A p+2 )

31 hence s ) 2 or to ) 2. For the triple (r,s0,t0 ), there are two

possibilities: r+s0 +t0 - k+2 or k+1. If r+s 0 +t0 - k+2, then r+s0 4 k

or r+t 4 k. If r+t Cg k, then by Theorem 1,
A0 0

br,s 0 ,t 0 +br=s.. w 0
+b1.,

But by the choice of (s0 ,t0 ), br,s0.i,t 0 M O hence br,s 0,t0  .

. Similarly, if r+s0 C k, then by Theorem 1,
""

00a eb 0 brse0 ,t0  + brs0 t0  0

Again by the choice of (s0,t0), brOst0_I - 01 hence br s  -0 t 0  0. Now

assume r+s0+t 0 - k+1. In this case, Theorem 1 gives

r+1s 0 ,t0  r,s 0 ,t0 - 0

But (r+l)+s 0+t0 - k+2i hence by what we have proved, br+1,s 0 ,t0 - 0.

Therefore br, 0 ,t0 W 0. This shows that all bu = 0. Thus there is no b

satisfying (10 )k, (2°)k, (3°)k and (40) simultaneously. Hence

m(k,p) 4 k

In particular, we have proved, for k ) 2p+2,

r(k,0) - k•

Finally, we want to treat the case k < 2p+2. As did (J21, we set

a : 2P+2-k, k' :- k-3a, 0' : p-2a

Then pl ) I and k' - 2p'+2. We claim that

min{r,s,t} ) A a

Indeed, we have

-17-
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min{s,tl C (s+t)/2 4 (k+2-r)/2

hence

p+2 4 minr+s,r+t) 4 r + (k+2-r)/2 = (k+2+r)/2

It follows that

r > 2(p+2)-(k+2) - 2p+2-k = 0

Also, one proves s > and t > o in the same fashion. Let

U' :- {ui r+s+t C k'+2 and minfr+ss+t,t+r) > p'+2)

Let F be the mapping given by

F((r,st)) - (r-O,s-a,t-U)

Then F maps U to U1. F is injective, obviously. F is also surjective,

since u e U' implies that (r+o,s+Ult+o) e U. Then b : U + R satisfies

(10 )m, (2°)m, (3°)m and (40) if and only if beF satisfies

(1 20 (2°) ( ) and (40). Therefore
m-2iI m-2o' 3-2cr

m(k,p)-2o 4 k'

We conclude that

m(k,p) 4 2o+k' = 2k-2p-2

This finishes the proof of Theorem 2.

Awwrk. We have seen that w, has approximation order 6 but

controlled approximation order only S. The latter fact means that we cannot

find a finite linear combination B of Mu (mu e w and their translates

such that the mapping

TB p( j )B(--j)
je 2  .

is degree-preserving on w . Nevertheless, there exists B e w5 with

compact support such that TB is degree-preserving on w5 * This can be %

proved by using local interpolation on triangles. Denote by (x] the linear %

functional of evaluation at x; i.e., Ex] f := f(x) = f(xlx 2 ). For j =

001,2) • 2, let

-18-4
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2 2
-A X, : []', j := [J]DI ,j : = tj]D2

:=[" [J]D , "= [J]D1 D2 , 6, j C"[JD2  -_

:" '}' ;=' [J+( 1/2'0)]D2 1',j" j+(0, 112)]1, 9 fj [+( 1/ 2 , 1/2)](D1-D2 ) ";-
:,7#j2 ,j1 9 2

From [BZ] we know that there exist BIij e 15,A (I - 1,...,9, j.e z2  with

compact support such that Bi,j = BiO("-J) and

A ilJBk 6 a2jk "

(Here 6 denotes the usual Kronecker sign.) Then for any p e w

P = J ), (Ai'P)BiJ " i (AiJP)Bio(0-J)

4i j i'ji l

From the above formula we can easily deduce that there exists B e v with

compact support such that TB is degree-preserving on w 5

We conjecture that, for any k and p, if m+1 is the approximation.4.',
P :

order of Wkx then there exists B e w with compact support such that

the mapping TS Is degree-preserving on m"

1- The author wishes to thank Professor Carl de Boor, who read the original

manuscript, for his valuable suggestions.
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